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Abstract—We compare three different machine learning tech-
niques for constructing predictive model for eye opening based
on channel length and interconnect cross-sectional geometry.
Surrogate model is constructed using sparse grids, support
vector regression, and artificial neural networks. Models for
training data are generated using quasi-TEM modeling of the
interconnect, and eye opening training data is obtained from
statistical high-speed link simulation using IBIS-AMI transmitter
and receiver models. Numerical results illustrate that all three
methods offer reasonable predictions of eye height, eye width and
eye width at 10−12 bit error rate.

I. INTRODUCTION

In modern computer system development, exhaustive post-
physical design board-level analysis is not practical due to
CPU time and memory constraints. Presently, board designers
tend to make design decisions based on worst-case scenarios,
which often lead to over-designing. Ideally, every net should
be modeled at the board level, including their frequency
responses and effects from nearby aggressors. The models can
be used to perform eye diagram simulations, and the electrical
performance of the nets are then ranked from best to worst.
Thus, creating a machine-learning driven framework for fast,
accurate and modular board-level signal integrity analysis to
determine eye opening of each net in an electronic system
is very desirable. Machine learning techniques have shown
promise to quickly assess the performance of high-speed links
[1], [2]. This paper studies three different kinds of machine
learning techniques, namely sparse grid [3], support vector
regression (SVR) [4] and artificial neural networks (ANN) for
eye opening prediction of high-speed links using IBIS-AMI
behavioral I/O models, including effects of equalization. We
examine the performance of the three methods via their appli-
cation to a differential microstrip channel exhibiting variability
in its geometric parameters. While all methods are effective in
accurate eye prediction, SVR is found to exhibit best accuracy
for the specific study.

II. PROBLEM STATEMENT

A. Differential Microstrip Line Channel
For the purposes of this paper, a differential microstrip line

channel is considered of cross sectional geometry depicted
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Figure 1. High-speed link simulation topology for eye diagram.

Table I
DESIGN PARAMETER RANGE OF VALUES

Parameter w s h l

Value (mm) [0.3, 0.5] [0.5, 0.7] [0.2, 0.4] [50, 100]

in Figure 1. Table I provides information about the four
geometric parameters of the channel, strip width, w, trace
spacing, s, substrate thickness, h, and channel length, l. These
parameters are uniformly distributed over the interval.

B. Workflow of Eye Diagram Prediction

Eye diagram of differential microstrip line channel can be
obtained by joint simulation of ANSYS Q3D Extractor and
Keysight ADS. ANSYS Q3D Extractor is used to calculate
the scattering parameters (S-parameters) of the channel. These,
then, are used as input into the Keysight ADS simulator
to generate the eye diagram. However, traditional simulation
techniques employed for eye analysis for a large amount of
parameters which lead to undesirable computation burdens. As
suggested by the flow in Figure 2, machine learning methods
can be used in place of direct simulation. In other words, once
successfully trained, the machine learning method can be used
to predict eye diagram directly from the value of uncertainty
parameters.

III. MACHINE LEARNING TECHNIQUES

A. Sparse Grids

Sparse Grids [3] is a family of algorithms for constructing
multidimensional quadrature and interpolation rules, where
the approximation operator is constructed as a linear com-
bination of tensors of multiple one dimensional operators.
For predictive modeling we use interpolation, which requires
generating training data at a set of prescribed nodes. For

20
19

 IE
EE

 2
8t

h 
C

on
fe

re
nc

e 
on

 E
le

ct
ric

al
 P

er
fo

rm
an

ce
 o

f E
le

ct
ro

ni
c 

Pa
ck

ag
in

g 
an

d 
Sy

st
em

s (
EP

EP
S)

 9
78

-1
-7

28
1-

45
85

-3
/2

0/
$3

1.
00

 ©
20

20
 IE

EE
 1

0.
11

09
/E

PE
PS

47
31

6.
20

19
.1

93
19

9

978-1-7281-4585-3/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: University of Exeter. Downloaded on June 22,2020 at 17:06:27 UTC from IEEE Xplore.  Restrictions apply. 



Figure 2. Workflow of eye diagram prediction

the four-dimensional parameter space problem, 721 nodes are
needed for level 7 interpolation, and 1041 nodes for level 8
interpolation. We performed simulation at the nodes in random
space, and also re-used the same data set for training SVR and
ANN methods.

B. Support Vector Regression

SVR [4], an important application branch of support vector
machine, is widely used for regression problems with the
characteristics of nonlinear mapping and robustness. For data
sample (x, y), instead of using the direct difference between
output f(x) of regression model and y to define loss function,
SVR allows a margin of tolerance ε. In other words, part
of the error can be tolerated when the absolute difference
between f(x) and y is smaller than ε in order to find a suitable
hyperplane for minimizing total error. SVR can be expressed
as

f(x) =

m∑
i=1

(âi − ai)κ(x, xi) + b, (1)

where âi ≥ 0 and ai ≥ 0 are Lagrangian operators, and b
is the displacement of hyperplane. This model is treated as a
linear combination of kernel function κ(x, xi). Several differ-
ent kernel functions can be applied for regression problems.
We select Gaussian kernel for this problem, which can be
expressed as

κ(x, xi) = exp

(
−‖x− xi‖2

2σ2

)
, (2)

where σ > 0 is the width of Gaussian kernel.

C. Artificial Neural Network

ANN is an algorithm that mimics the design of human
brain neurons, which performs well in regression problems
due to the strong abilities of autonomous learning, feature

Figure 3. Architecture of ANN

extracting and generalization. Figure 3 illustrates the main
architecture of the ANN proposed in this paper, which consists
of one input layer, three hidden layers and one output layer.
Uncertain design parameters w,H, s, l (labeled as x1, x2, x3
and x4 in the figure) are fed into this ANN model to predict
three characteristics of the eye diagram. There are 10, 100
and 10 neural cells in the first, second and third hidden
layer, respectively. Rectified Linear Unit (ReLU) [5] is used
as the activation function. The loss function calculates the
mean square error between outputs and expected outputs,
while stochastic gradient descent (SGD) [6] is adopted as the
optimization method with learning rate 0.05.

IV. RESULTS AND COMPARISONS

We consider three predicted eye diagram measurements.
“Height” is the distance between the 3σ points of the logic-1
and logic-0 histograms, measured across the eye level bound-
ary. “Width” is the distance between the 3-sigma points of
the crossing time histograms. “WidthAtBER” is the maximum
width of contour at 10−12 bit error rate (BER).

A. Training Data Generation

We use 721 sets of samples of w,H, s, l as training data
sets and choose another 320 sets of samples for test. These
samples are generated by sparse grids at level 7 and level 8.
Eye diagram characteristics (Height, Width and WidthAtBER)
of each sample are simulated by ANSYS Q3D Extractor and
Keysight ADS.

B. Prediction Results

As mentioned above, sparse grids, SVR and ANN are
applied to predict the performance of the channel model.
Figures 4, 5, and 6 offer a comparison of the three methods
on the basis of their error in predicting Height, Width, and
WidthAtBER, respectively. The prediction error is defined as
follows:

Authorized licensed use limited to: University of Exeter. Downloaded on June 22,2020 at 17:06:27 UTC from IEEE Xplore.  Restrictions apply. 



 Sparse Grid
 SVR
 ANN

Figure 4. Prediction Error of Height
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Figure 5. Prediction Error of Width

Error =
|yprediction − ysimulation|

ysimulation
. (3)

The numerical results in these figures show that sparse grid,
SVR and ANN can be used for eye diagram prediction with
good performance. All these three methods can almost keep
every prediction error less than 10%. For this example, SVR
has the best performance in terms of prediction error. It is
worth noting that ANN model can be further improved for
better prediction results after adding more hidden layers or
doing other topology optimization.

V. CONCLUSION AND FUTURE WORK

In this paper, we examined the performance of three dif-
ferent machine learning methods, sparse grid, SVR and ANN,
in predicting the eye diagram of differential microstrip line
channel including equalization. All three methods are shown

 Sparse Grid
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 ANN

Figure 6. Prediction Error of WidthAtBER

to exhibit acceptable accuracy in predicting eye height, eye
width, and eye width at 10−12 BER in the presence of
variability in strip width, strip spacing, substrate height and
channel length. SVR demonstrates its strong learning and
prediction ability for the specific study and can be treated
as a promising method for more complex channel model
prediction. Sparse grid and SVR require all data available
during training, while ANN is more flexible since it can stream
data as they become available. An important feature of any
machine learning method we choose will be its scalability with
respect to the number of variable design parameters. It will be
important to investigate how each of these methods work with
problems with larger number of design parameters exhibiting
variability.
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